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magnetoluminescence from doped quantum wells
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Sandia National Laboratories, Albuquerque, NM 87185, USA

Received 4 March 1996

Abstract. We present a theory for and the observation of LO-phonon side bands for transitions
between the electron and hole Landau levels (ne, nh = 0, 1, . . .). The side band of the
primary ne = 0 → nh = 0 line in an n-GaAs/InGaAs/AlGaAs quantum well is absent at
low temperatures. The side bands of the secondaryne (>0) → nh = 0 lines are relatively
strong, growing withne in excellent agreement with the theory. The suppression of small-
1n (=|ne − nh|) side bands is due to the interference between the electron–phonon and hole–
phonon recombination channels and the magnetic quantization in two dimensions.

Landau-level spectroscopy offers a powerful probe of electronic structures and interactions
in semiconductor quantum wells (QWs) and heterostructures [1, 2]. A cw laser creates
electrons and holes, for example, in n-doped degenerate QWs. The electrons thermalize
rapidly into the Fermi–Dirac distribution in the conduction band, while the minority holes
relax to near the top of the valence band according to the Boltzmann distribution. In a
magnetic fieldB‖z perpendicular to the QW plane, the carriers are quantized into the
Landau levels (ne, nh = 0, 1, . . .). Zero-phonon electron–hole recombinationsne → nh

occur through direct transitions withne = nh or through weaker indirect off-diagonal
transitions withne 6= nh in direct-gap QWs. At low temperatures with most of the holes in
the ground levelnh = 0, the selection-rule-allowed 0→ 0 transition is dominant, while the
zeroth-order forbiddenne (>0) → 0 transitions are weaker [2]. At high temperatures with
higher hole levels populated, recombinations occur through the allowed direct transitions.
This crossover between off-diagonal and direct transitions was utilized to determine the
conduction and valence band energy dispersion curves [3].

In this letter, we present the first—to the best of our knowledge—observation of, and
a microscopic theory for the longitudinal-optical- (LO-) phonon side bands of the band-
to-band Landau-level spectra. Contrary to intuition, the side band of the primary 0→ 0
transition is found to be absent from an n-type GaAs/In0.15Ga0.85As/Al 0.15Ga0.85As (sample
No 1) QW, while the side bands of the subsidiaryne (>0) → 0 lines are relatively strong
and grow stronger with increasingne in excellent agreement with the theory. We will
show that the inversion of the relative intensities arises from the interference between the
electron–phonon and hole–phonon recombination channels in the presence of the magnetic
quantization in two dimensions (2D). While the data to be presented here are restricted to
a single sample, we have observed similar effects in a variety of configurations of InGaAs
on GaAs including GaAs/InGaAs/GaAs.

The 4 K photoluminescence (PL) spectra from an n-type QW 80Å wide (sample
No 1: electron densityN2D = 8.6 × 1011 cm−2) at 5 T are shown in figure 1(a). The
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Figure 1. The 4 K PLspectra at (a) 5 T and (b) 9 T for sample No 1 excited with an argon-ion
laser (514.2 nm) source. The spectral resolution is 1 meV. The 0→ 0 peak energies are 1390
and 1396 meV for 5 T and 9 T, respectively. The peak energies of side band ‘ne → 0p’ are
about 37 meV below thene → 0 zero-phonon peaks. The calculated oscillator strengths are
spread out into Gaussian line shapes (dashed curves) with a full width at half-maximum of 4
meV. The 1→ 1 and 1→ 1p peaks in (b) are from unrelaxed holes in thenh = 1 level. The
position of the peaks identified here rises nearly linearly with the field.

experimental technique is adequately described by Jones and Wickstrom [4]. In this strained
QW, the light-hole state (i.e.,|3/2, ±1/2〉) lies about 50 meV below the heavy-hole state
(i.e., |3/2, ±3/2〉) (with light in-plane mass) due to compression. Therefore, only the
|3/2, ±3/2〉 holes are relevant. The minority holes are mostly in the ground levelnh = 0.
The zero-phonon lines consist of the primary 0→ 0 peak at 1390 meV and higher-
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energy secondary 1→ 0, 2 → 0, and 3 → 0 peaks evenly separated by the electron
cyclotron energy. The topne = 3 level is half-filled, neglecting spin splitting. Each of the
ne (>0) → 0 peaks has a LO-phonon side band about 37 meV (close to the well-known
GaAs LO-phonon energy 36.2 meV) below the peak and is labelled as ‘ne → 0p’ in figure
1(a). It is important to note that the intensity of the side bands isinverted in relative
strength, increasing withne. In particular, the side band of the prominent 0→ 0 line is
absent. A similar behaviour is displayed at 9 T in figure 1(b) where the top level,ne = 1,
is filled.

Figure 2. The 4 K PLpeaks for sample No 1 as a function ofB. The zero energy is at 1385.8
meV. The lines are guides to the eye. The lines for the side bands are displaced from the
zero-phonon counterparts by about 37 meV. Only the PL peaks which move withB are shown.
Weak 1–1p transitions which appear above 7.8 T are not shown. The data along the dotted lines
are due to the hot holes.

The peak PL energies are displayed as a function ofB in figure 2. The solid lines (which
are guides to the eye) for then–0p phonon side bands are about 37 meV below but parallel
to those forn–0 zero-phonon transitions (n = 1, 2, 3). The data along the dotted lines for
the 1–1 and 2–2 transitions are due to hot holes. Various unidentifiedB-independent peaks
such as those labelled ‘noise’ or ‘?’ in figure 1(b) are not shown. The authors are not
aware of any previous observation of the phonon side bands from band-to-band transitions
in QWs, although phonon side bands were observed earlier from exciton luminescence [5]
and phonon-assisted lasing [6]. We have not seen side bands in GaAs/AlGaAs. In this
lattice-matched system, there is no large strain-induced contribution to the heavy–light-hole
splitting and hence, because of the small splitting due to the confinement effect alone, the
spectral lines are harder to resolve.

In the following, we present a theory of the phonon side bands to explain the data.
For zero-phonon transitions, we consider only the total intensity of the 0→ 0 transition,
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neglecting the impurity interactions. The low-T line width and the off-diagonal transitions
are caused by carrier–impurity interactions and are well understood [7]. We calculate
the total intensity of each side band with zero width (i.e., ignoring impurity interactions)
and compare with the 0→ 0 intensity. The effect of the line width is considered only
phenomenologically at the end to compare the theory and the data. We are interested in the
low-carrier-density and the low-T regime where the carriers are in the ground sublevels.

A system of electrons and holes interacting with the LO phonons is described, in the
Landau gauge, by the Fröhlich Hamiltonian [8]

H =
∑
α,t

εαna
†
αtaαt +

∑
q

h̄ωqb
†
qbq +

∑
α,t,t ′,q

V α
t,t ′(q)a

†
αt ′aαt (bq + b

†
−q) (1)

wheret = (n, ky) andky is the wave number. The first term in (1) is the Hamiltonian for
the electrons and the holes in thenth level with the energy

εαn =
(

n + 1

2

)
h̄ωα. (2)

In (1), a
†
αt , aαt are the fermion creation and annihilation operators, andωa = eB/mαc,

wheremα indicates the electron (me) and hole (mh) effective masses. The second term in
(1) is the LO-phonon Hamiltonian, whereb†

q, bq are the boson creation and annihilation
operators. The dispersion of the frequency will be ignored in the numerical evaluation
(i.e., h̄ωq ' 37 meV). Finally, the last term in (1) describes the carrier–LO-phonon
interaction:

V α
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where` = (eB/h̄c)−1/2 and

Vαq = sα

(
4πηh̄5/2ω

3/2
q

�q2
√

2mα

)1/2

. (4)

The quantitiesq‖, φq, andJnn′(x) in (3) are defined byqx + iqy = q‖ exp(iφq) and

Jnn′(x) =
√

n<!

n>!
e−x/2x(n>−n<)/2Ln>−n<

n<
(x) (5)

whereLn>−n<
n<

(x) is the associated Laguerre polynomial andn> (n<) is the larger (lesser)
of n andn′. In (4), � is the sample volume, andη is the dimensionless electron–phonon
coupling constant. The sign of the interaction with the phonon field is opposite for the
electrons and the holes (i.e.,se = +1 andsh = −1). Finally, Sα(qz) is defined by

Sα(qz) =
∫

φα(z)28(qz, z) dz (6)

where8(qz, z) is the phonon field andφα(z) is the ground-state confinement wave function.
The line-shape function is proportional to the one-phonon-assisted electron–hole

recombination rate. Initially, we calculate this rate using a simple perturbation theory. The
result is justified later by a rigorous dipole–dipole correlation function approach based on a
temperature-ordered Green’s function technique. The latter also helps to remove divergences
and to include dielectric screening. The line-shape function is given in an arbitrary unit by

Fph(ω) = π
∑

t,t ′,q,±
|t±et,ht ′(q)|2f (εen − µe)f (εhn′ − µh)δ(h̄ω − εen − εhn′ ± h̄ωq) (7a)
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where the transition matrixtet,ht ′ equals

t±et,ht ′(q) = −dcv

(
Ṽ e

t ′,t (q)

εen′ − εen ± h̄ωq
+ Ṽ h

t ′,t (q)

εhn − εhn′ ± h̄ωq

)√
Nq + 1

2
± 1

2
. (7b)

In (7), h̄ω is the photon energy minus the band gap,f (x) = (exp(x/kBT ) + 1)−1, µe (µh)

is the electron (hole) chemical potential, andNq is the boson function. The quantitỹV α
t ′,t (q)

is given by (3) withVαq replaced by the screened carrier–phonon interactionṼαq, and
dcv (∝〈φe|φh〉) is the interband dipole matrix element connecting the conduction (c) and
valence (v) band. The upper and lower signs correspond to the one-phonon emission and
absorption processes, respectively.

Figure 3. A two-step phonon-assisted recombination process whereby an electron in the initial
level n = 2 falls into a hole atn′ = 0. The vertical and slanted lines denote the dipolar coupling
and the carrier–phonon scattering, respectively. The levelsne = 0 andnh = 2 are intermediate
virtual states. The inset shows a diagrammatic representation: the solid lines on the left and
right are dressed electron and hole propagators, respectively. Long curvy lines are the phonon
propagators. The short wavy curves are the dipole-field vertices (∝dcv). The arrows denote the
flow of energy.

A two-step phonon-assisted process recombining an electron in leveln (=2) with a
hole in n′ (=0) is illustrated in figure 3. The first term in (7b) corresponds to channel
1 in figure 3 whereby an electron in thene = n level is admixed with an intermediate
virtual statene = n′′ through electron–phonon interaction and then falls into a hole in the
nh = n′ level emitting a photon throughdcv. Similarly, the second term in (7b) corresponds
to channel 2 where an electron in thene = n level is coupled to an intermediate virtual
statenh = n′′′ through dcv and then falls into a hole atnh = n′ through hole–phonon
interaction. The dipole field couples only the electrons and holes with the same quantum
number (i.e.,n = n′′′, n′ = n′′). Here, it is convenient to use the electron picture for the
valence band and then convert the result into the hole picture by reversing the signs of the
electron energies as well as the electron–phonon interaction for the second term of (7b).

A microscopic justification for the result in (7) is provided by the dipole–dipole
correlation function diagrams displayed in the inset of figure 3. A tedious evaluation [8]
of these diagrams indicates that the two terms in (7b) should be replaced, apart from the
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numeratorsṼ e
t ′,t (q) and Ṽ h

t ′,t (q), by the real parts of the electron and hole propagators
Gen′(εen − µe ∓ h̄ωq + i0) andGhn(εhn′ − µh ∓ h̄ωq + i0), respectively. The divergence due
to the vanishing denominators is therefore avoided by the damping of the energy levels.
The imaginary parts of the same Green’s functions yield resonant processes and are not of
interest here: they contribute to the relaxation toward the thermal equilibrium through two-
step processes whereby an electron (hole) relaxes from one level to another in the conduction
(valence) band through resonant phonon emission or absorption and then recombines with a
hole (electron) through a zero-phonon direct transition; we are not concerned with how the
equilibrium is reached. The Green’s functionGαn(z) is defined by the standard expression
Gαn(z)

−1 = z − εαn + µα − 6αn(z). The dominant contribution to the self-energy6αn(z)

arises, in doped QWs, from interactions with ionized dopant impurities [7]. The widths of
spectral lines are determined by the imaginary part0αn of 6αn. The divergences mentioned
above are relevant only in a very-high-density system (e.g.,N > 1.1× 1012 cm−2 in GaAs
QWs) where the Fermi energy exceeds the LO-phonon energy. At lower densities, the
expression in (7b) has no divergence problem even without damping. The first and third
diagrams in the inset of figure 3 yield the first and second term alone in (7b) respectively,
while the cross term arises from the diagram in the middle. The cross term corresponds to
the interference between the channels 1 and 2 in figure 3 and is responsible for the absence
of the 0→ 0 side band in the spectral lines in figures 1 and 2 as will be discussed later.

To gain an understanding of the suppression of the direct-transition side bands as well
as for a numerical evaluation, we use the approximationφe(z) ' φh(z) in the following
for well-confined electrons and holes. Because the two denominators in (7b) are identical
(i.e.,= ±h̄ωq) for n = n′, the quantity in the large parentheses of (7b) becomes proportional
to (±1/h̄ωq)(Ṽhq + Ṽeq) = (±1/h̄ωq)(Vhq + Veq), which is independent of the dielectric
screening. The latter equality is valid in the random-phase approximation (RPA) [9] in the
limit φe(z) = φh(z) [10]. The intensities from the direct transitions are then proportional to
ξ ≡ (1− (me/mh)

1/4)2 sinceVhq = −Veq(me/mh)
1/4 and become very small as long asmh

is not much larger thanme = 0.07m0. This is relevant to our sample, where the average
in-plane hole massmh ' 0.14m0 is relatively light (compared with the bulkmh ∼ 0.45m0),
yielding ξ = 0.025 � 1. The degree of the cancellation between the electron–phonon
and hole–phonon channels decreases for increasing1n = |n − n′|, resulting in a stronger
intensity for larger1n.

The low-temperature spectral intensities of the side bands are calculated for the phonon
emission process in (7) for sample No 1 using the bulk GaAs electron–phonon coupling
constantηGaAs = 0.06 [11] and are compared with the data in figure 1 at 9 T and 5 T,
where thene = 1 level is filled and thene = 3 level is half-filled, respectively. An infinite-
barrier approximation is employed for the confinement wave functions due to the negligible
penetration of the electron and hole wave functions into the barriers. For sample No 1, the
effect of phonon confinement is expected to be small for the low Al concentrationx = 0.15
as in GaAs/AlxGa1−xAs QWs, where the confinement effect is important only abovex = 0.2
[12]. Therefore, a bulk phonon model8(qz, z) = exp(iqzz) is used forSα(qz) in (6). This
approximation is also consistent with the fact that the phonon energy observed in figure 1
is that of the bulk phonons. Confined phonons have stronger interactions with the carriers,
yielding stronger side bands. Formation of the confined phonon modes and the interface
modes in layeredalloy structures lacks a quantitative explanation at present. In figure 1, the
dielectric screening is neglected for the dynamic screening at the optical phonon energy. The
latter is not expected to be as efficient as the static screening, although it is not understood
well currently [13]. The calculated intensity is spread out into a Gaussian line shape with a
4 meV full width at half-maximum for each side band. Otherwise, there are no adjustable
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parameters. The basic features of the predictions of the theory show excellent agreement
with the data. In order to demonstrate the cancellation between the two terms in (7b),
the same calculation was repeated after changing the sign of the second term therein. The
0 → 0p strength increased drastically above the 1→ 0p peak—contrary to the data.

Although the 0→ 0p side band is considerably weaker than other side bands, its
relative strength increases significantly at high fields becausemh increases with the energy
of the nh = 0 level due to the valence band nonparabolicity [3]. Although we have used
an average hole massmh ' 0.14m0 [3] in the field range of interest, thenh = 0 hole
mass becomes much larger than 0.14m0 at high fields, yielding an increasingly largerξ . In
contrast,me remains approximately constant. Our preliminary data show that the 0→ 0p
intensity begins to be visible above 15 T due to this effect. In this regard, the weak but
visible 1→ 1p peak at 9 T in figure 1(b) (much smaller than the 1→ 0p peak as predicted
by our theory) can be attributed to this effect. The population of thenh = 1 level is due to
unrelaxed holes, which have largemh (>0.25m0) due to their large energy.

In summary, we have presented a microscopic theory for and the observation of LO-
phonon side bands for the optical transitions between the electron and hole Landau levels
from an n-type QW. The main feature of the data is that the intensity peaks of the phonon
side bands are inverted in relative strength compared with those of the zero-phonon lines:
the side band of the predominantne = 0 → nh = 0 transition is nearly absent while the side
bands of the secondaryne (>0) → nh = 0 lines are relatively strong, growing withne in
excellent agreement with the theory. The suppression of small-1n (=|ne − nh|) side bands
arises from the interference between the electron–phonon and hole–phonon recombination
channels and the magnetic quantization in 2D.

The authors thank P J Turley of Duke University for valuable conversations about the
phonon confinement in quantum-well structures and D Emin for helpful discussions about
electron–phonon interactions. This work was supported by US DOE under Contract No
DE-AC04-94AL85000.
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